Mjolnir: Deformable Image Registration using Feature Diffusion
نویسندگان
چکیده
Image registration is the process of aligning separate images into a common reference frame so that they can be compared visually or statistically. In order for this alignment to be accurate and correct it is important to identify the correct anatomical correspondences between different subjects. We propose a new approach for a feature-based, inter-subject deformable image registration method using a novel displacement field interpolation. Among the top deformable registration algorithms in the literature today is the work of Shen et al. called HAMMER. This is a feature-based, hierarchical registration algorithm, which introduces the novel idea of fusing feature and intensity matching. The algorithm presented in this paper is an implementation of that method, where significant improvements of some important aspects have been made. A new approach to the algorithm will be introduced as well as clarification of some key features of the work of Shen et al. which have not been elaborated in previous publications. The new algorithm, which is referred to as Mjolnir (Thor’s hammer), was validated on both synthesized and real T1 weighted MR brain images. The results were compared with results generated by HAMMER and show significant improvements in accuracy with reduction in computation time.
منابع مشابه
Mjolnir: Extending HAMMER Using a Diffusion Transformation Model and Histogram Equalization for Deformable Image Registration
Image registration is a crucial step in many medical image analysis procedures such as image fusion, surgical planning, segmentation and labeling, and shape comparison in population or longitudinal studies. A new approach to volumetric intersubject deformable image registration is presented. The method, called Mjolnir, is an extension of the highly successful method HAMMER. New image features i...
متن کاملDeformable Registration of CT Pelvis Images Using Mjolnir
Our recently published 3D-3D deformable image registration algorithm, Mjolnir (Ellingsen et al., 2006) was developed for inter-subject registration of MR brain images. Mjolnir is a hybrid registration method, where both anatomical features and image intensities are used to hierarchically align the images. In addition to the hierarchical scheme, the algorithm was implemented in a multi-resolutio...
متن کاملDiffusion Tensor Image Registration Using Tensor Geometry and Orientation Features
This paper presents a method for deformable registration of diffusion tensor (DT) images that integrates geometry and orientation features into a hierarchical matching framework. The geometric feature is derived from the structural geometry of diffusion and characterizes the shape of the tensor in terms of prolateness, oblateness, and sphericity of the tensor. Local spatial distributions of the...
متن کاملA Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملEvaluation of deformable image registration in HDR gynecological brachytherapy
Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...
متن کامل